Quantum walks defined by digraphs and generalized Hermitian adjacency matrices
نویسندگان
چکیده
We propose a quantum walk defined by digraphs (mixed graphs). This is like Grover that perturbed certain complex-valued function digraphs. The discriminant of this matrix normalization generalized Hermitian adjacency matrices. Furthermore, we give definitions the positive and negative supports transfer matrix, clarify explicit formulas their square. In addition, tables computer on identification eigenvalues.
منابع مشابه
Line Digraphs and Coined Quantum Random Walks
In this note, we give a characterization of the adjacency matrix of the line digraph of a regular digraph and we discuss a generalization.On the light of the characterization given, we remark that the underlying digraph of a coined quantum random walk is the line digraph of a regular digraph. 1. A characterization of the adjacency matrix of the line digraph of a regular digraph 1.1. Set-up. The...
متن کاملCongruence of Hermitian Matrices by Hermitian Matrices
Two Hermitian matrices A, B ∈ Mn(C) are said to be Hermitian-congruent if there exists a nonsingular Hermitian matrix C ∈ Mn(C) such that B = CAC. In this paper, we give necessary and sufficient conditions for two nonsingular simultaneously unitarily diagonalizable Hermitian matrices A and B to be Hermitian-congruent. Moreover, when A and B are Hermitian-congruent, we describe the possible iner...
متن کاملNullity of Hermitian-Adjacency Matrices of Mixed Graphs
A mixed graph means a graph containing both oriented edges and undirected edges. The nullity of the Hermitian-adjacency matrix of a mixed graph G, denoted by ηH(G), is referred to as the multiplicity of the eigenvalue zero. In this paper, for a mixed unicyclic graph G with given order and matching number, we give a formula on ηH(G), which combines the cases of undirected and oriented unicyclic ...
متن کاملPseudo-Hermitian continuous-time quantum walks
In this paper we present a model exhibiting a new type of continuous-time quantum walk (as a quantum mechanical transport process) on networks, which is described by a non-Hermitian Hamiltonian possessing a real spectrum. We call it pseudo-Hermitian continuous-time quantum walk. We introduce a method to obtain the probability distribution of walk on any vertex and then study a specific system. ...
متن کاملCounting Closed Walks and Spanning Trees in Graphs via Linear Algebra and Matrices 1 Adjacency Matrices and Counting Closed Walks
The material of this section is based on Chapter 1 of Richard Stanley’s notes “Topics in Algebraic Combinatorics”, which can be found at http://math.mit.edu/∼rstan/algcomb.pdf. Recall that an m-by-n matrix is an array of numbers (m rows and n columns), and we can multiply an mby-n matrix and an n-by-p matrix together to get an m-by-p matrix. The resulting matrix has entries obtained by taking e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quantum Information Processing
سال: 2021
ISSN: ['1573-1332', '1570-0755']
DOI: https://doi.org/10.1007/s11128-021-03033-z